Averaging in spherically symmetric cosmology

نویسندگان

  • A. A. Coley
  • N. Pelavas
چکیده

The averaging problem in cosmology is of fundamental importance. When applied to study cosmological evolution, the theory of macroscopic gravity (MG) can be regarded as a long-distance modification of general relativity. In the MG approach to the averaging problem in cosmology, the Einstein field equations on cosmological scales are modified by appropriate gravitational correlation terms. We study the averaging problem within the class of spherically symmetric cosmological models. That is, we shall take the microscopic equations and effect the averaging procedure to determine the precise form of the correlation tensor in this case. In particular, by working in volume-preserving coordinates, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. We find that the correlation tensor in a Friedmann-Lemaı̂treRobertson-Walker (FLRW) background must be of the form of a spatial curvature. Inhomogeneities and spatial averaging, through this spatial curvature correction term, can have a very significant dynamical effect on the dynamics of the Universe and cosmological observations; in particular, we discuss whether spatial averaging might lead to a more conservative explanation of the observed acceleration of the Universe (without the introduction of exotic dark matter fields). We also find that the correlation tensor for a non-FLRW background can be interpreted as the sum of a spatial curvature and an anisotropic fluid. This may lead to interesting effects of averaging on astrophysical scales. We also discuss the results of averaging an inhomogeneous Lemaı̂tre-Tolman-Bondi solution as well as calculations of linear perturbations (that is, the backreaction) in an FLRW background, which support the main conclusions of the analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spherically Symmetric Solutions in a New Braneworld Massive Gravity Theory

In this paper, a combination of the braneworld scenario and covariant de Rham-Gabadadze-Tolley (dRGT) massive Gravity theory is proposed. In this setup, the five-dimensional bulk graviton is considered to be massive. The five dimensional nonlinear ghost-free massive gravity theory affects the 3-brane dynamics and the gravitational potential on the brane. Following the solutions with spherical s...

متن کامل

Nonsingular black holes and degrees of freedom in quantum gravity.

Spherically symmetric space-times provide many examples for interesting black hole solutions, which classically are all singular. Following a general program, space-like singularities in spherically symmetric quantum geometry, as well as other inhomogeneous models, are shown to be absent. Moreover, one sees how the classical reduction from infinitely many kinematical degrees of freedom to only ...

متن کامل

Loop Quantum Cosmology III: Wheeler–DeWitt Operators

In the framework of loop quantum cosmology anomaly free quantizations of the Hamiltonian constraint for Bianchi class A, locally rotationally symmetric and isotropic models are given. Basic ideas of the construction in (non-symmetric) loop quantum gravity can be used, but there are also further inputs because the special structure of symmetric models has to be respected by operators. In particu...

متن کامل

Bubbles and Quantum Tunnelling in Inflationary Cosmology

We review a procedure to use semiclassical methods in the quantization of General Relativistic shells and apply these techniques in some simplified models of inflationary cosmology. Some interesting open issues are introduced and the relevance of their solution in the broader context of Quantum Gravity is discussed. The interplay of the gravitational and quantum realms is a fundamental topic in...

متن کامل

Lemaître Class Dark Energy Model for Relaxing Cosmological Constant

Cosmological constant corresponds to the maximally symmetric cosmological term with the equation of state p = −ρ. Introducing a cosmological term with the reduced symmetry, pr = −ρ in the spherically symmetric case, makes cosmological constant intrinsically variable component of a variable cosmological term which describes time-dependent and spatially inhomogeneous vacuum dark energy. Relaxatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007